An accidental side effect of text mining
Extended version of https://towardsdatascience.com/an-accidental-side-effect-of-text-mining-4b43f8ee1273 “The end of our exploring will be to arrive at where we started, and to know the place for the first time.” — T. S. Eliot
I was reading lately lots of books on productivity and self-development and often I found pieces of advice that I want to re-read later. The highlighting option on kindle makes this very easy. By reading and highlighting consistently I accumulated a sizeable amount text which was a good representation of the books I read.
Since I know the content very well. I want to apply text mining and sentiment analysis to this data so that I can compare the results to my real opinion about the books. And if they match I will be more convinced to apply it to my next business problem.
In part, this is also a self-exploration, since I could answer questions such as what kind of content I like more, what was their emotional charge?
Let’s find the answers.
To be objective, I will create an independent character called “the bat”. His next mission is to hack my data and analyze it to gather insights for selling me more books. Unfortunately, reading is not his specialty.
The room was in a mess when he entered. As he plugged the USB drive on his laptop, he barely heard the radio which was still on. The reporter:
From the moment we switch on the early morning our cell phones to deal with the flood of information in some form of a whatsapp or facebook message or a tweet until we fall asleep at night overwriting or reading a product review we leave bread crumbs to our personal flavors on internet.
Many businesses use this unstructured data to drive their sales by better marketing through targeted product recommendations or to segregate their customers…
He squeezed his teeth when he saw the data of 21000 lines of text from 28 books. His first encounter was the book “Mindset” by Carol Dweck, where she introduces the concept of growth mindset. The idea behind is people who have the growth mindset believe their abilities can be improved by putting effort whereas the people with the fixed mindset believe that their abilities are fixed at birth. As a consequence, people who has the fixed mindset miss the opportunity to get better at many things even though they can. Simply, because they don’t believe in it in the first place.
If you are not familiar with the concept, here is a video of Carol Dweck explaining her research on growth mindset.
Long lines of text made him tired, he didn’t realize how the time passed. Now, he was a man of growth. He decided to learn text mining.
He started to learn the R packages for text mining, he didn’t like the package name tidytext but he was slightly losing his prejudices. It was a long night. He fell asleep on his table as the sun slowly rose. …
It was lighting my back garden where I could glance from time to time to the trees painted by the snow overnight ⛄️. Without an idea about how things went on the another part of the town, I continued to read and highlight my kindle as I zip from a glass of red wine 🍷.
…
We will know what happened to our hacker later. First, let’s go together through his notebook.
The hacker’s notes
He noted down each step of his text mining plan carefully. Let me help you go through them.
This is how the exported kindle highlights look like.
Reading and parsing the text file
# Use readLines function to parse the text file
highlights <- readLines("posts_data/Kindle_highlights_Serdar.Rmd", encoding = "UTF-8")
# Create a dataframe where each row is a line from the text
df <- data.frame(highlights)
# Packages
library(tidyverse) # includes ggplot2, dplyr, tidyr, readr, purrr, tibble, stringr, forcats
library(tidytext)
library(wordcloud2)
Every data science project requires some sort of data preparation. Stop words are generally the most common words in a language and are usually filtered out before processing of text data.
Let’s look at the stop_words dataset from the tidytext package. Since it is a long list of words (>1K) I will print every fifth word as an example.
data(stop_words)
# print every 50th word
stop_words_small <- stop_words[seq(1, nrow(stop_words), 50),]
stop_words_small %>% print(n=50)
## # A tibble: 23 x 2
## word lexicon
## <chr> <chr>
## 1 a SMART
## 2 at SMART
## 3 contain SMART
## 4 few SMART
## 5 hers SMART
## 6 last SMART
## 7 nine SMART
## 8 presumably SMART
## 9 some SMART
## 10 they'd SMART
## 11 very SMART
## 12 without SMART
## 13 what snowball
## 14 they'll snowball
## 15 during snowball
## 16 again onix
## 17 but onix
## 18 finds onix
## 19 if onix
## 20 much onix
## 21 parted onix
## 22 since onix
## 23 under onix
Every data science project requires some sort of data preparation. Stop words are generally the most common words in a language and are usually filtered out before processing of text data.
e.g. they’ll in stop_words
And how the word they’ll appears in the text:
Yellow highlight | Page: 200 Memories are continually revised, along with the meaning we derive from them, so that in the future they’ll be of even more use.
We have to make stop_words and our data compatible, otherwise some words such as they’ll, don’t, can’t might appear in our results.
We can use str_replace_all() function from stringr package to find all the apostrophes and convert them into single quotes.
df$highlights <- str_replace_all(df$highlights, "’", "'")
Now, the text is ready for the frequency analysis. Words in a text mining project are called tokens. We can split the text into single words by unnest_tokens() function from tidytext package, filter the stop_words and count.
df <- df %>% unnest_tokens(word, highlights) %>%
anti_join(stop_words) %>%
filter(!word %in% c("highlights","highlight", "page",
"location", "yellow", "pink", "orange", "blue"))
He also added here some additional words which frequently appear in kindle highlights output.
dplyr() package functions are very useful for grouping and counting the words from the lists that are created.
top_kindle_highlights <- df %>%
group_by(word) %>%
count() %>%
arrange(desc(n))
He noted down his first insight. 10 most frequent words from my kindle highlights.
top_kindle_highlights
## # A tibble: 12,433 x 2
## # Groups: word [12,433]
## word n
## <chr> <int>
## 1 people 592
## 2 story 340
## 3 life 318
## 4 time 309
## 5 mind 213
## 6 change 212
## 7 feel 211
## 8 world 171
## 9 person 170
## 10 habits 157
## # ... with 12,423 more rows
If you don’t like to look at long list of words wordclouds are a good alternative. Wordcloud2 package gives additional customization options for your wordclouds, for example you can use any image as a markup.
wordcloud2(top_kindle_highlights, figPath = bat, size = 1, backgroundColor = "white", color = color_vector(data$freq) )
Some ideas started to get shaped in his mind. He thought who made those highlights is someone interested in storytelling, writing and good communication, good habits, and people. Someone who wants to influence his life in a positive way. He was becoming more and more interested in the books.
He wanted to dig deeper.
Bigram Analysis
Single words are a good starting point what the books were about. But they are limited without the context. Frequency analysis can also be performed to measure how often word pairs (bigrams) occur in the text. This allows us to capture finer details in the text.
To do this he combined the unnested single tokens which is isolated above back into a continuous text and then performed bigram analysis. You can use str_c() function from stringr package to concatenate the single words.
# Recreate the df
df <- data.frame(highlights)
df$highlights <- str_replace_all(df$highlights, "’", "'")
df <- df %>% unnest_tokens(word, highlights) %>%
anti_join(stop_words) %>%
filter(!word %in% c("highlights","highlight", "page",
"location", "yellow", "pink", "orange", "blue",
"export", "hidden", "truncated", "kindle", "note", "limits"))
df_com <- str_c(df$word, " ")
df_com <- data.frame(df_com)
Let’s split the text into bigrams and count the most common word pairs.
df_bigram <- df_com %>%
unnest_tokens(bigram, df_com, token = "ngrams",
n = 3, n_min = 2)
top_bigrams <- df_bigram %>%
group_by(bigram) %>%
count() %>%
arrange(desc(n))%>%
print(n=20)
## # A tibble: 107,317 x 2
## # Groups: bigram [107,317]
## bigram n
## <chr> <int>
## 1 body language 30
## 2 behavior change 23
## 3 crucial conversations 19
## 4 fixed mindset 19
## 5 growth mindset 19
## 6 subconscious mind 19
## 7 told story 18
## 8 type person 17
## 9 object desire 16
## 10 system 1 16
## 11 pay attention 15
## 12 bad habits 13
## 13 law behavior 13
## 14 law behavior change 13
## 15 social media 13
## 16 inciting incident 12
## 17 people feel 12
## 18 subject matter 12
## 19 human nature 11
## 20 objective criteria 11
## # ... with 1.073e+05 more rows
# And visualize them on a plot
top <- top_bigrams[1:25,]
top %>% ungroup() %>% mutate(bigram = fct_reorder(bigram, n)) %>%
ggplot(aes(x=bigram, y=n)) +
geom_col() +
coord_flip() +
theme_classic() +
theme(legend.position = "none",
text = element_text(size=18))
I see that one of the most frequent bigrams is behavioral change. We can use this information to make sense of what we have found previously. For example, one of the most frequent word was change. And we saw with bigram analysis that the word change was used mostly in a context of behavioral change. So bigrams are useful tools to get deeper insights about the text content.
My highlighted text data come from 28 different books, and by looking at the most frequent words and bigrams in the whole document we got an overview of them.
To see how the individual books differ we can repeat this procedure for each of them.
But how can we capture them individually?
Let’s first look at the text once more.Before each book “Your Kindle Notes For:” appears.
Let’s find out the line numbers for the beginning and the end of each book and use those indexes for fishing out each book.
We will reuse the data frame df we created above. str_which() function returns line index numbers which contain an given input pattern.
In the final step, a for loop to capture the text between two consecutive indexes will give us the book between them.
# Since I modified df above. I will recreate it again.
df <- data.frame(highlights)
df$highlights <- str_replace_all(df$highlights, "’", "'")
# Getting the index number for each book
indexes <- str_which(df$highlights, pattern = fixed("Your Kindle Notes For"))
book_names <- df$highlights[indexes + 1]
indexes <- c(indexes,nrow(df))
# Create an empty list
books <- list()
# Now the trick. Capture each 28 book separately in a list.
for(i in 1:(length(indexes)-1)) {
books[[i]] <- data.frame(df$highlights[(indexes[i]:indexes[i+1]-1)])
colnames(books[[i]]) <- "word_column"
books[[i]]$word_column <- as.character(books[[i]]$word_column)
}
Let’s check whether it worked, for example you can look up the 5th book on our list.
head(books[[5]])
## word_column
## 1
## 2 Your Kindle Notes For:
## 3 Bird by Bird: Some Instructions on Writing and Life
## 4 Anne Lamott
## 5 Last accessed on Saturday July 27, 2019
## 6 75 Highlight(s) | 4 Note(s)
head(books[[15]])
## word_column
## 1
## 2 Your Kindle Notes For:
## 3 Getting to Yes: Negotiating an agreement without giving in
## 4 Roger Fisher and William Ury
## 5 Last accessed on Saturday November 3, 2018
## 6 266 Highlight(s) | 3 Note(s)
Now, we captured all 28 books and we can apply the same procedure to analyze each of them by another for loop.
top <- list()
for(i in 1:28){
books[[i]] <- books[[i]] %>% unnest_tokens(word, word_column) %>%
anti_join(stop_words) %>%
filter(!word %in% c("highlights","highlight", "page",
"location", "yellow", "pink", "orange", "blue",
"export", "hidden", "truncated", "kindle", "note", "limits"))
# Find out the top words in each book and capture them in a list (top)
top[[i]] <- books[[i]] %>%
group_by(word) %>%
count() %>%
arrange(desc(n))
}
for(i in 1:28){
print(book_names[[i]])
print(top[[i]])
}
## [1] "Thinking, Fast and Slow"
## # A tibble: 1,619 x 2
## # Groups: word [1,619]
## word n
## <chr> <int>
## 1 people 33
## 2 system 26
## 3 1 18
## 4 mind 18
## 5 effect 17
## 6 bad 15
## 7 cognitive 15
## 8 ease 15
## 9 theory 13
## 10 decision 12
## # ... with 1,609 more rows
## [1] "Influence: The Psychology of Persuasion (Collins Business Essentials)"
## # A tibble: 278 x 2
## # Groups: word [278]
## word n
## <chr> <int>
## 1 142 5
## 2 146 5
## 3 131 3
## 4 147 3
## 5 154 3
## 6 179 3
## 7 association 3
## 8 food 3
## 9 information 3
## 10 people 3
## # ... with 268 more rows
## [1] "On Writing Well, 30th Anniversary Edition: An Informal Guide to Writing Nonfiction"
## # A tibble: 770 x 2
## # Groups: word [770]
## word n
## <chr> <int>
## 1 writing 26
## 2 write 18
## 3 sentence 15
## 4 writer 15
## 5 reader 13
## 6 people 10
## 7 words 9
## 8 person 8
## 9 writers 8
## 10 day 7
## # ... with 760 more rows
## [1] "Wired for Story: The Writer's Guide to Using Brain Science to Hook Readers from the Very First Sentence"
## # A tibble: 1,657 x 2
## # Groups: word [1,657]
## word n
## <chr> <int>
## 1 story 104
## 2 goal 41
## 3 protagonist 40
## 4 life 27
## 5 protagonist's 23
## 6 internal 21
## 7 brain 20
## 8 reader 20
## 9 external 19
## 10 world 19
## # ... with 1,647 more rows
## [1] "Bird by Bird: Some Instructions on Writing and Life"
## # A tibble: 522 x 2
## # Groups: word [522]
## word n
## <chr> <int>
## 1 writing 17
## 2 mind 7
## 3 bird 6
## 4 voices 5
## 5 attention 4
## 6 day 4
## 7 hope 4
## 8 life 4
## 9 makes 4
## 10 muscles 4
## # ... with 512 more rows
## [1] "Atomic Habits: An Easy and Proven Way to Build Good Habits and Break Bad Ones"
## # A tibble: 2,736 x 2
## # Groups: word [2,736]
## word n
## <chr> <int>
## 1 habits 140
## 2 habit 110
## 3 behavior 94
## 4 change 73
## 5 people 50
## 6 time 47
## 7 identity 38
## 8 day 36
## 9 brain 32
## 10 person 32
## # ... with 2,726 more rows
## [1] "Storynomics: Story-Driven Marketing in the Post-Advertising World"
## # A tibble: 3,042 x 2
## # Groups: word [3,042]
## word n
## <chr> <int>
## 1 story 149
## 2 mind 50
## 3 stories 48
## 4 core 47
## 5 marketing 46
## 6 brand 45
## 7 life 42
## 8 change 41
## 9 audience 35
## 10 due 33
## # ... with 3,032 more rows
## [1] "Crucial Conversations Tools for Talking When Stakes Are High, Second Edition"
## # A tibble: 1,828 x 2
## # Groups: word [1,828]
## word n
## <chr> <int>
## 1 people 84
## 2 dialogue 40
## 3 stories 40
## 4 due 34
## 5 feel 33
## 6 crucial 31
## 7 conversations 30
## 8 meaning 30
## 9 story 30
## 10 conversation 28
## # ... with 1,818 more rows
## [1] "Pre-Suasion: A Revolutionary Way to Influence and Persuade"
## # A tibble: 524 x 2
## # Groups: word [524]
## word n
## <chr> <int>
## 1 attention 6
## 2 influence 5
## 3 mental 5
## 4 trust 5
## 5 visitors 5
## 6 comfort 4
## 7 emotional 4
## 8 experience 4
## 9 message 4
## 10 associations 3
## # ... with 514 more rows
## [1] "Made to Stick: Why some ideas take hold and others come unstuck"
## # A tibble: 1,752 x 2
## # Groups: word [1,752]
## word n
## <chr> <int>
## 1 people 64
## 2 knowledge 27
## 3 story 25
## 4 ideas 24
## 5 concrete 18
## 6 surprise 17
## 7 care 16
## 8 time 15
## 9 attention 14
## 10 core 14
## # ... with 1,742 more rows
## [1] "The Charisma Myth: Master the Art of Personal Magnetism"
## # A tibble: 1,802 x 2
## # Groups: word [1,802]
## word n
## <chr> <int>
## 1 feel 43
## 2 body 38
## 3 people 35
## 4 language 33
## 5 charisma 27
## 6 warmth 27
## 7 charismatic 24
## 8 power 22
## 9 person 19
## 10 confidence 18
## # ... with 1,792 more rows
## [1] "The Power of Moments: Why Certain Experiences Have Extraordinary Impact"
## # A tibble: 1,299 x 2
## # Groups: word [1,299]
## word n
## <chr> <int>
## 1 moments 29
## 2 moment 21
## 3 people 17
## 4 time 15
## 5 insight 13
## 6 milestones 13
## 7 purpose 11
## 8 relationships 11
## 9 create 9
## 10 goal 9
## # ... with 1,289 more rows
## [1] "Principles: Life and Work"
## # A tibble: 1,131 x 2
## # Groups: word [1,131]
## word n
## <chr> <int>
## 1 people 54
## 2 thinking 16
## 3 decision 12
## 4 level 12
## 5 life 12
## 6 pain 12
## 7 habits 11
## 8 understand 11
## 9 change 10
## 10 knowing 10
## # ... with 1,121 more rows
## [1] "Deep Work: Rules for Focused Success in a Distracted World"
## # A tibble: 711 x 2
## # Groups: word [711]
## word n
## <chr> <int>
## 1 attention 12
## 2 deep 11
## 3 ability 9
## 4 book 9
## 5 life 9
## 6 time 9
## 7 mind 7
## 8 world 7
## 9 focus 6
## 10 called 5
## # ... with 701 more rows
## [1] "Getting to Yes: Negotiating an agreement without giving in"
## # A tibble: 1,489 x 2
## # Groups: word [1,489]
## word n
## <chr> <int>
## 1 agreement 33
## 2 negotiation 33
## 3 options 23
## 4 people 19
## 5 objective 17
## 6 positions 17
## 7 ideas 16
## 8 position 15
## 9 shared 15
## 10 solution 15
## # ... with 1,479 more rows
## [1] "Who: The A Method for Hiring"
## # A tibble: 920 x 2
## # Groups: word [920]
## word n
## <chr> <int>
## 1 people 38
## 2 job 22
## 3 players 16
## 4 person 15
## 5 candidate 14
## 6 candidates 13
## 7 company 13
## 8 hire 11
## 9 hiring 11
## 10 interview 11
## # ... with 910 more rows
## [1] "Mindset: Changing The Way You think To Fulfil Your Potential"
## # A tibble: 910 x 2
## # Groups: word [910]
## word n
## <chr> <int>
## 1 mindset 43
## 2 people 33
## 3 growth 27
## 4 fixed 23
## 5 blame 18
## 6 learning 16
## 7 learn 15
## 8 effort 11
## 9 failure 11
## 10 makes 10
## # ... with 900 more rows
## [1] "The 4-Hour Work Week: Escape the 9-5, Live Anywhere and Join the New Rich"
## # A tibble: 736 x 2
## # Groups: word [736]
## word n
## <chr> <int>
## 1 time 11
## 2 life 10
## 3 mail 6
## 4 product 6
## 5 week 6
## 6 world 6
## 7 baby 5
## 8 celebrity 5
## 9 create 5
## 10 days 5
## # ... with 726 more rows
## [1] "Tools of Titans: The Tactics, Routines, and Habits of Billionaires, Icons, and World-Class Performers"
## # A tibble: 1,956 x 2
## # Groups: word [1,956]
## word n
## <chr> <int>
## 1 people 41
## 2 life 25
## 3 time 24
## 4 write 24
## 5 world 22
## 6 10 17
## 7 ideas 14
## 8 book 13
## 9 times 12
## 10 read 11
## # ... with 1,946 more rows
## [1] "The Elements of Eloquence: How to Turn the Perfect English Phrase"
## # A tibble: 116 x 2
## # Groups: word [116]
## word n
## <chr> <int>
## 1 change 5
## 2 english 3
## 3 pattern 3
## 4 poets 3
## 5 19 2
## 6 44 2
## 7 attitude 2
## 8 colour 2
## 9 contradict 2
## 10 fall 2
## # ... with 106 more rows
## [1] "The One Thing: The Surprisingly Simple Truth Behind Extraordinary Results: Achieve your goals with one of the world's bestselling success books (Basic Skills)"
## # A tibble: 587 x 2
## # Groups: word [587]
## word n
## <chr> <int>
## 1 time 29
## 2 success 15
## 3 results 11
## 4 block 9
## 5 day 9
## 6 extraordinary 9
## 7 life 8
## 8 matters 8
## 9 successful 8
## 10 discipline 7
## # ... with 577 more rows
## [1] "How to Win Friends and Influence People"
## # A tibble: 140 x 2
## # Groups: word [140]
## word n
## <chr> <int>
## 1 people 7
## 2 ability 3
## 3 fears 3
## 4 116 2
## 5 book 2
## 6 human 2
## 7 knowledge 2
## 8 meeting 2
## 9 person's 2
## 10 sell 2
## # ... with 130 more rows
## [1] "The Untethered Soul: The Journey Beyond Yourself"
## # A tibble: 770 x 2
## # Groups: word [770]
## word n
## <chr> <int>
## 1 life 73
## 2 feel 34
## 3 events 26
## 4 mind 25
## 5 world 20
## 6 fear 19
## 7 inside 19
## 8 energy 17
## 9 experience 17
## 10 heart 17
## # ... with 760 more rows
## [1] "Man's Search For Meaning: The classic tribute to hope from the Holocaust"
## # A tibble: 894 x 2
## # Groups: word [894]
## word n
## <chr> <int>
## 1 life 29
## 2 suffering 24
## 3 meaning 20
## 4 human 19
## 5 intention 11
## 6 75 9
## 7 logotherapy 9
## 8 patient 9
## 9 world 9
## 10 called 8
## # ... with 884 more rows
## [1] "The Power of your Subconscious Mind and Other Works"
## # A tibble: 600 x 2
## # Groups: word [600]
## word n
## <chr> <int>
## 1 mind 34
## 2 subconscious 28
## 3 wealth 13
## 4 idea 11
## 5 mental 10
## 6 love 9
## 7 life 8
## 8 peace 8
## 9 happiness 7
## 10 desire 6
## # ... with 590 more rows
## [1] "Ego is the Enemy: The Fight to Master Our Greatest Opponent"
## # A tibble: 831 x 2
## # Groups: word [831]
## word n
## <chr> <int>
## 1 ego 19
## 2 people 12
## 3 purpose 11
## 4 111 8
## 5 change 7
## 6 147 6
## 7 function 6
## 8 life 6
## 9 passion 6
## 10 path 6
## # ... with 821 more rows
## [1] "Outliers: The Story of Success"
## # A tibble: 105 x 2
## # Groups: word [105]
## word n
## <chr> <int>
## 1 ability 3
## 2 knowing 3
## 3 sense 3
## 4 communicate 2
## 5 distance 2
## 6 family 2
## 7 intelligence 2
## 8 power 2
## 9 practical 2
## 10 sternberg 2
## # ... with 95 more rows
## [1] "The Start-up of You: Adapt to the Future, Invest in Yourself, and Transform Your Career"
## # A tibble: 570 x 2
## # Groups: word [570]
## word n
## <chr> <int>
## 1 people 14
## 2 product 8
## 3 opportunities 7
## 4 person 7
## 5 start 7
## 6 assets 6
## 7 job 6
## 8 time 6
## 9 138 5
## 10 create 5
## # ... with 560 more rows
Now, looking at the frequent words from each book we can get more insights what they are about.
The bigrams for the same books.
df <- data.frame(highlights)
df$highlights <- str_replace_all(df$highlights, "’", "'")
# Getting the index number for each book
indexes <- str_which(df$highlights, pattern = fixed("Your Kindle Notes For"))
book_names <- df$highlights[indexes + 1]
indexes <- c(indexes,nrow(df))
# Capturing each book individually
books <- list()
for (i in 1:(length(indexes)-1)) {
books[[i]] <- data.frame(df$highlights[(indexes[i]:indexes[i+1]-1)])
colnames(books[[i]]) <- "word_column"
books[[i]]$word_column <- as.character(books[[i]]$word_column)
}
# Next step in the plan was splitting the text into single words by unnest_tokens function.
for(i in 1:28){
books[[i]] <- books[[i]] %>% unnest_tokens(word, word_column) %>%
anti_join(stop_words) %>%
filter(!word %in% c("highlights","highlight", "page",
"location", "yellow", "pink", "orange", "blue",
"export", "hidden", "truncated", "kindle", "note", "limits"))
}
# After this preparation step I can combine the single words back into a continous text
for(i in 1:28){
books[[i]] <- str_c(books[[i]]$word, " ")
books[[i]] <- data.frame(books[[i]])
}
df_bigram <- list()
for(i in 1:28){
df_bigram[[i]] <- books[[i]] %>%
unnest_tokens(bigram, books..i.., token = "ngrams",
n = 3, n_min = 2)
}
for (i in 1:28){
print(book_names[i])
df_bigram[[i]] %>%
group_by(bigram) %>%
count() %>%
arrange(desc(n))%>%
print(n=10)
}
## [1] "Thinking, Fast and Slow"
## # A tibble: 5,768 x 2
## # Groups: bigram [5,768]
## bigram n
## <chr> <int>
## 1 system 1 16
## 2 cognitive ease 9
## 3 system 2 8
## 4 halo effect 4
## 5 loss aversion 4
## 6 possibility effect 4
## 7 affective forecasting 3
## 8 availability bias 3
## 9 cognitive strain 3
## 10 decision weights 3
## # ... with 5,758 more rows
## [1] "Influence: The Psychology of Persuasion (Collins Business Essentials)"
## # A tibble: 673 x 2
## # Groups: bigram [673]
## bigram n
## <chr> <int>
## 1 association principle 2
## 2 click whirr 2
## 3 click whirr response 2
## 4 luncheon technique 2
## 5 reciprocity rule 2
## 6 whirr response 2
## 7 0 13 1
## 8 0 13 rule 1
## 9 13 rule 1
## 10 13 rule reciprocation 1
## # ... with 663 more rows
## [1] "On Writing Well, 30th Anniversary Edition: An Informal Guide to Writing Nonfiction"
## # A tibble: 2,172 x 2
## # Groups: bigram [2,172]
## bigram n
## <chr> <int>
## 1 500th appendix 2
## 2 choice unity 2
## 3 confronted solved 2
## 4 despair finding 2
## 5 despair finding solution 2
## 6 english language 2
## 7 federal buildings 2
## 8 finally solve 2
## 9 finally solve surgeon 2
## 10 finding solution 2
## # ... with 2,162 more rows
## [1] "Wired for Story: The Writer's Guide to Using Brain Science to Hook Readers from the Very First Sentence"
## # A tibble: 6,602 x 2
## # Groups: bigram [6,602]
## bigram n
## <chr> <int>
## 1 external goal 8
## 2 internal goal 6
## 3 cognitive unconscious 5
## 4 internal issue 5
## 5 real life 5
## 6 story question 5
## 7 antonio damasio 4
## 8 effect trajectory 4
## 9 steven pinker 4
## 10 1 story 3
## # ... with 6,592 more rows
## [1] "Bird by Bird: Some Instructions on Writing and Life"
## # A tibble: 1,304 x 2
## # Groups: bigram [1,304]
## bigram n
## <chr> <int>
## 1 bird bird 3
## 2 muscles cramp 3
## 3 cramp wounds 2
## 4 life view 2
## 5 likable narrator 2
## 6 muscles cramp wounds 2
## 7 pay attention 2
## 8 1,015 read 1
## 9 1,015 read reading 1
## 10 1,048 digress 1
## # ... with 1,294 more rows
## [1] "Atomic Habits: An Easy and Proven Way to Build Good Habits and Break Bad Ones"
## # A tibble: 12,309 x 2
## # Groups: bigram [12,309]
## bigram n
## <chr> <int>
## 1 behavior change 23
## 2 type person 17
## 3 law behavior 13
## 4 law behavior change 13
## 5 bad habits 11
## 6 social media 9
## 7 habits attractive 6
## 8 3rd law 5
## 9 bad habit 5
## 10 break chain 5
## # ... with 1.23e+04 more rows
## [1] "Storynomics: Story-Driven Marketing in the Post-Advertising World"
## # A tibble: 12,819 x 2
## # Groups: bigram [12,819]
## bigram n
## <chr> <int>
## 1 object desire 16
## 2 told story 16
## 3 inciting incident 12
## 4 positive negative 10
## 5 purpose told 10
## 6 subject matter 10
## 7 core character 9
## 8 purpose told story 8
## 9 real beauty 7
## 10 change team's 6
## # ... with 1.281e+04 more rows
## [1] "Crucial Conversations Tools for Talking When Stakes Are High, Second Edition"
## # A tibble: 8,751 x 2
## # Groups: bigram [8,751]
## bigram n
## <chr> <int>
## 1 crucial conversations 19
## 2 due 27 10
## 3 mutual purpose 10
## 4 shared pool 8
## 5 silence violence 8
## 6 crucial conversation 7
## 7 path action 7
## 8 due 26 6
## 9 due 43 6
## 10 fool's choice 6
## # ... with 8,741 more rows
## [1] "Pre-Suasion: A Revolutionary Way to Influence and Persuade"
## # A tibble: 1,261 x 2
## # Groups: bigram [1,261]
## bigram n
## <chr> <int>
## 1 attention goal 2
## 2 concept audience 2
## 3 levels importance 2
## 4 mandel johnson 2
## 5 mental activity 2
## 6 social proof 2
## 7 thousand dollars 2
## 8 twenty thousand 2
## 9 twenty thousand dollars 2
## 10 writing session 2
## # ... with 1,251 more rows
## [1] "Made to Stick: Why some ideas take hold and others come unstuck"
## # A tibble: 6,372 x 2
## # Groups: bigram [6,372]
## bigram n
## <chr> <int>
## 1 curse knowledge 7
## 2 guessing machines 6
## 3 people care 6
## 4 goodyear tires 5
## 5 knowledge gaps 5
## 6 people's attention 5
## 7 popcorn popper 5
## 8 security goodyear 5
## 9 security goodyear tires 5
## 10 sinatra test 5
## # ... with 6,362 more rows
## [1] "The Charisma Myth: Master the Art of Personal Magnetism"
## # A tibble: 6,343 x 2
## # Groups: bigram [6,343]
## bigram n
## <chr> <int>
## 1 body language 30
## 2 power warmth 6
## 3 feel bad 4
## 4 imagination reality 4
## 5 people feel 4
## 6 responsibility transfer 4
## 7 charismatic body 3
## 8 charismatic body language 3
## 9 confidence ability 3
## 10 distinguish imagination 3
## # ... with 6,333 more rows
## [1] "The Power of Moments: Why Certain Experiences Have Extraordinary Impact"
## # A tibble: 3,967 x 2
## # Groups: bigram [3,967]
## bigram n
## <chr> <int>
## 1 defining moments 5
## 2 backward integrated 3
## 3 backward integrated design 3
## 4 breaking script 3
## 5 connecting meaning 3
## 6 integrated design 3
## 7 moments pride 3
## 8 understanding validation 3
## 9 bad stronger 2
## 10 bose headphones 2
## # ... with 3,957 more rows
## [1] "Principles: Life and Work"
## # A tibble: 3,960 x 2
## # Groups: bigram [3,960]
## bigram n
## <chr> <int>
## 1 common sense 3
## 2 left brained 3
## 3 responsible parties 3
## 4 134 people 2
## 5 274 remember 2
## 6 407 values 2
## 7 407 values abilities 2
## 8 achieve goals 2
## 9 bad outcomes 2
## 10 blind spots 2
## # ... with 3,950 more rows
## [1] "Deep Work: Rules for Focused Success in a Distracted World"
## # A tibble: 1,981 x 2
## # Groups: bigram [1,981]
## bigram n
## <chr> <int>
## 1 deliberate practice 4
## 2 13 master 2
## 3 14 deep 2
## 4 29 ability 2
## 5 77 gallagher 2
## 6 ability concentrate 2
## 7 anders ericsson 2
## 8 book shining 2
## 9 choose focus 2
## 10 fixed schedule 2
## # ... with 1,971 more rows
## [1] "Getting to Yes: Negotiating an agreement without giving in"
## # A tibble: 5,363 x 2
## # Groups: bigram [5,363]
## bigram n
## <chr> <int>
## 1 objective criteria 11
## 2 principled negotiation 8
## 3 bottom line 6
## 4 inventing options 6
## 5 mutual gain 6
## 6 reach agreement 6
## 7 reaching agreement 6
## 8 options mutual 5
## 9 options mutual gain 5
## 10 brainstorming session 4
## # ... with 5,353 more rows
## [1] "Who: The A Method for Hiring"
## # A tibble: 3,196 x 2
## # Groups: bigram [3,196]
## bigram n
## <chr> <int>
## 1 talented people 6
## 2 outcomes competencies 4
## 3 96 performance 3
## 4 96 performance compare 3
## 5 fit company 3
## 6 performance compare 3
## 7 2 million 2
## 8 95 interrupt 2
## 9 career goals 2
## 10 company 31 2
## # ... with 3,186 more rows
## [1] "Mindset: Changing The Way You think To Fulfil Your Potential"
## # A tibble: 3,182 x 2
## # Groups: bigram [3,182]
## bigram n
## <chr> <int>
## 1 fixed mindset 19
## 2 growth mindset 19
## 3 people fixed 4
## 4 people fixed mindset 4
## 5 183 son 3
## 6 assign blame 3
## 7 social interactions 3
## 8 142 create 2
## 9 157 fixed 2
## 10 157 fixed mindset 2
## # ... with 3,172 more rows
## [1] "The 4-Hour Work Week: Escape the 9-5, Live Anywhere and Join the New Rich"
## # A tibble: 1,927 x 2
## # Groups: bigram [1,927]
## bigram n
## <chr> <int>
## 1 http e.ggtimer.com 3
## 2 basic assumptions 2
## 3 car seat 2
## 4 limit tasks 2
## 5 offer customer 2
## 6 options offer 2
## 7 options offer customer 2
## 8 parkinson's law 2
## 9 shorten time 2
## 10 suggest days 2
## # ... with 1,917 more rows
## [1] "Tools of Titans: The Tactics, Routines, and Habits of Billionaires, Icons, and World-Class Performers"
## # A tibble: 6,321 x 2
## # Groups: bigram [6,321]
## bigram n
## <chr> <int>
## 1 10 ideas 4
## 2 bad ideas 4
## 3 keeping track 4
## 4 track times 4
## 5 world war 4
## 6 516 write 3
## 7 extreme ownership 3
## 8 heart head 3
## 9 keeping track times 3
## 10 narrative narrative 3
## # ... with 6,311 more rows
## [1] "The Elements of Eloquence: How to Turn the Perfect English Phrase"
## # A tibble: 272 x 2
## # Groups: bigram [272]
## bigram n
## <chr> <int>
## 1 change attitude 2
## 2 change pattern 2
## 3 change pattern change 2
## 4 fall love 2
## 5 pattern change 2
## 6 0 19 1
## 7 0 19 bred 1
## 8 11 2018 1
## 9 11 2018 8 1
## 10 19 bred 1
## # ... with 262 more rows
## [1] "The One Thing: The Surprisingly Simple Truth Behind Extraordinary Results: Achieve your goals with one of the world's bestselling success books (Basic Skills)"
## # A tibble: 1,629 x 2
## # Groups: bigram [1,629]
## bigram n
## <chr> <int>
## 1 extraordinary results 7
## 2 time block 7
## 3 selected discipline 3
## 4 3 time 2
## 5 3 time block 2
## 6 achieve extraordinary 2
## 7 block day 2
## 8 default settings 2
## 9 discipline build 2
## 10 easier unnecessary 2
## # ... with 1,619 more rows
## [1] "How to Win Friends and Influence People"
## # A tibble: 318 x 2
## # Groups: bigram [318]
## bigram n
## <chr> <int>
## 1 time meeting 2
## 2 0 72 1
## 3 0 72 lies 1
## 4 110 people 1
## 5 110 people smile 1
## 6 112 time 1
## 7 112 time meeting 1
## 8 116 116 1
## 9 116 116 bad 1
## 10 116 bad 1
## # ... with 308 more rows
## [1] "The Untethered Soul: The Journey Beyond Yourself"
## # A tibble: 3,195 x 2
## # Groups: bigram [3,195]
## bigram n
## <chr> <int>
## 1 preconceived notions 8
## 2 life avoiding 7
## 3 devote life 6
## 4 empty space 5
## 5 experience life 5
## 6 model reality 5
## 7 rest life 5
## 8 spend life 5
## 9 spend life avoiding 5
## 10 153 events 4
## # ... with 3,185 more rows
## [1] "Man's Search For Meaning: The classic tribute to hope from the Holocaust"
## # A tibble: 2,917 x 2
## # Groups: bigram [2,917]
## bigram n
## <chr> <int>
## 1 paradoxical intention 6
## 2 hyper intention 4
## 3 anticipatory anxiety 3
## 4 existential vacuum 3
## 5 fall asleep 3
## 6 human existence 3
## 7 intention fall 3
## 8 intention fall asleep 3
## 9 meaning life 3
## 10 potential meaning 3
## # ... with 2,907 more rows
## [1] "The Power of your Subconscious Mind and Other Works"
## # A tibble: 1,750 x 2
## # Groups: bigram [1,750]
## bigram n
## <chr> <int>
## 1 subconscious mind 17
## 2 dominant idea 4
## 3 idea subconscious 3
## 4 peace mind 3
## 5 power subconscious 3
## 6 accept idea 2
## 7 accepted subconscious 2
## 8 accepted subconscious mind 2
## 9 annoy irritate 2
## 10 annoy irritate permit 2
## # ... with 1,740 more rows
## [1] "Ego is the Enemy: The Fight to Master Our Greatest Opponent"
## # A tibble: 2,290 x 2
## # Groups: bigram [2,290]
## bigram n
## <chr> <int>
## 1 112 start 2
## 2 147 deceived 2
## 3 33 purpose 2
## 4 beat people 2
## 5 ego enemy 2
## 6 function function 2
## 7 people beat 2
## 8 people beat people 2
## 9 people beneath 2
## 10 purpose realism 2
## # ... with 2,280 more rows
## [1] "Outliers: The Story of Success"
## # A tibble: 232 x 2
## # Groups: bigram [232]
## bigram n
## <chr> <int>
## 1 knowing knowing 2
## 2 power distance 2
## 3 practical intelligence 2
## 4 0 884 1
## 5 0 884 write 1
## 6 1,051 robert 1
## 7 1,051 robert sternberg 1
## 8 1,052 practical 1
## 9 1,052 practical intelligence 1
## 10 1,063 annette 1
## # ... with 222 more rows
## [1] "The Start-up of You: Adapt to the Future, Invest in Yourself, and Transform Your Career"
## # A tibble: 1,611 x 2
## # Groups: bigram [1,611]
## bigram n
## <chr> <int>
## 1 product management 3
## 2 faster cheaper 2
## 3 skills experiences 2
## 4 soft assets 2
## 5 weak ties 2
## 6 0 15 1
## 7 0 15 paranoid 1
## 8 101 business 1
## 9 101 business crazy 1
## 10 101 inspired 1
## # ... with 1,601 more rows
If you want to see another example of this capturing process you can have a look at my recent post here.
Looking at each book individually, he started to be more and more obsessed about the books in my kindle. He decided to order a couple of them.
We can use sentiment analysis to evaluate emotional charge in a text data. Most common uses are social media monitoring, customer experience management, and Voice of Customer, to understand how they feel.
The bing lexicon categorizes words into positive and negative categories, in a binary fashion. The nrc lexicon uses categories of positive, negative, anger, anticipation, disgust, fear, joy, sadness, surprise, and trust.
Using bing lexicon
I created a list of the words with highest contribution to each emotional category. For example success and effective for positive, bad and hard for negative sentiment.
Here is how R produced the above plot:
df <- data.frame(highlights)
df$highlights <- str_replace_all(df$highlights, "’", "'")
df <- df %>% unnest_tokens(word, highlights) %>%
anti_join(stop_words) %>%
filter(!word %in% c("highlights","highlight", "page",
"location", "yellow", "pink", "orange", "blue",
"export", "hidden", "truncated", "kindle", "note", "limits"))
bing_word_counts <- df %>% inner_join(get_sentiments("bing")) %>%
count(word, sentiment, sort = TRUE) %>%
ungroup()
bing_word_counts
## # A tibble: 1,854 x 3
## word sentiment n
## <chr> <chr> <int>
## 1 bad negative 93
## 2 success positive 91
## 3 hard negative 85
## 4 love positive 69
## 5 difficult negative 63
## 6 negative negative 63
## 7 easy positive 62
## 8 fear negative 62
## 9 wrong negative 62
## 10 positive positive 58
## # ... with 1,844 more rows
# Top contributors to positive and negative sentiment
bing <- bing_word_counts %>%
group_by(sentiment) %>%
top_n(10) %>%
ggplot(aes(reorder(word, n), n, fill=sentiment)) +
geom_bar(alpha=0.8, stat="identity", show.legend = FALSE)+
facet_wrap(~sentiment, scales = "free_y") +
labs(y= "Contribution to sentiment", x = NULL) +
coord_flip()
bing
Using nrc lexion
I am more likely to highlight a text if it is positive rather than negative. And also trust, anticipation and joy rather than sadness or anger.
df <- data.frame(highlights)
df$highlights <- str_replace_all(df$highlights, "’", "'")
df <- df %>% unnest_tokens(word, highlights) %>%
anti_join(stop_words) %>%
filter(!word %in% c("highlights","highlight", "page",
"location", "yellow", "pink", "orange", "blue",
"export", "hidden", "truncated", "kindle", "note", "limits"))
## Joining, by = "word"
sentiment <- df %>%
left_join(get_sentiments("nrc")) %>%
filter(!is.na(sentiment)) %>%
count(sentiment, sort = TRUE)
## Joining, by = "word"
sentiment
## # A tibble: 10 x 2
## sentiment n
## <chr> <int>
## 1 positive 8326
## 2 trust 4165
## 3 negative 3860
## 4 anticipation 3366
## 5 joy 2642
## 6 fear 2446
## 7 sadness 1844
## 8 anger 1799
## 9 surprise 1339
## 10 disgust 1093
Normalized sentiments
One important thing to add, since each emotion category has different number of words in a language. Emotional categories with less words are less likely to appear in a given text. Thus, I would like to normalize them according to their numbers in the lexicon and see how it differs than the above results.
# I will add numbers of each categories from the NRC lexicon
lexicon <- c(2317, 3338, 1234, 842, 1483, 691, 1250, 1195, 1060, 535)
polarity <- c(1,1,1,1,1,0,0,0,0,0)
sentiment <- data.frame(sentiment, lexicon)
norm_sentiment <- sentiment %>% mutate( normalized = n/lexicon) %>% arrange(desc(normalized))
sentiment <- data.frame(norm_sentiment, polarity)
sentiment
## sentiment n lexicon normalized polarity
## 1 anticipation 3366 842 3.997625 1
## 2 positive 8326 2317 3.593440 1
## 3 fear 2446 691 3.539797 1
## 4 negative 3860 1234 3.128039 1
## 5 disgust 1093 535 2.042991 1
## 6 joy 2642 1483 1.781524 0
## 7 anger 1799 1195 1.505439 0
## 8 sadness 1844 1250 1.475200 0
## 9 surprise 1339 1060 1.263208 0
## 10 trust 4165 3338 1.247753 0
# General findings
sentiment %>% group_by(polarity) %>% summarize(n2 = sum(lexicon))
## # A tibble: 2 x 2
## polarity n2
## <dbl> <dbl>
## 1 0 8326
## 2 1 5619
Now, anticipation is the highest emotion found in the text that I highlighted. This does not seem a coincidence to me. Since most of the books in our analysis is about productivity and self-development. The productivity tips and tools usually contain words associated with anticipation.
In a similar way, I can look at the sentiment for individual books
df <- data.frame(highlights)
# Kindle uses apostrophes (’), but stop_words uses sigle quotes (')
# To be able to use all stop_words I should replace apostrophes with quotes
df$highlights <- str_replace_all(df$highlights, "’", "'")
# Getting the index number for each book
indexes <- str_which(df$highlights, pattern = fixed("Your Kindle Notes For"))
book_names <- df$highlights[indexes + 1]
indexes <- c(indexes,nrow(df))
# Capturing each book individually
books <- list()
for (i in 1:(length(indexes)-1)) {
books[[i]] <- data.frame(df$highlights[(indexes[i]:indexes[i+1]-1)])
colnames(books[[i]]) <- "word_column"
books[[i]]$word_column <- as.character(books[[i]]$word_column)
}
# Next step in the plan was splitting the text into single words by unnest_tokens function.
for(i in 1:28){
books[[i]] <- books[[i]] %>% unnest_tokens(word, word_column) %>%
anti_join(stop_words) %>%
filter(!word %in% c("highlights","highlight", "page",
"location", "yellow", "pink", "orange", "blue"))
}
sentiment <- list()
for (i in 1:28){
sentiment[[i]] <- books[[i]] %>%
left_join(get_sentiments("nrc")) %>%
filter(!is.na(sentiment)) %>%
count(sentiment, sort = TRUE)
print(book_names[i])
print(sentiment[[i]])
}
## [1] "Thinking, Fast and Slow"
## # A tibble: 10 x 2
## sentiment n
## <chr> <int>
## 1 positive 450
## 2 trust 256
## 3 negative 254
## 4 anticipation 163
## 5 fear 153
## 6 sadness 116
## 7 joy 107
## 8 anger 104
## 9 disgust 81
## 10 surprise 75
## [1] "Influence: The Psychology of Persuasion (Collins Business Essentials)"
## # A tibble: 10 x 2
## sentiment n
## <chr> <int>
## 1 positive 53
## 2 trust 37
## 3 joy 15
## 4 negative 15
## 5 fear 12
## 6 anticipation 11
## 7 sadness 8
## 8 anger 7
## 9 surprise 3
## 10 disgust 2
## [1] "On Writing Well, 30th Anniversary Edition: An Informal Guide to Writing Nonfiction"
## # A tibble: 10 x 2
## sentiment n
## <chr> <int>
## 1 positive 172
## 2 negative 98
## 3 trust 81
## 4 anticipation 63
## 5 anger 48
## 6 fear 47
## 7 disgust 42
## 8 sadness 42
## 9 joy 37
## 10 surprise 26
## [1] "Wired for Story: The Writer's Guide to Using Brain Science to Hook Readers from the Very First Sentence"
## # A tibble: 10 x 2
## sentiment n
## <chr> <int>
## 1 positive 413
## 2 negative 197
## 3 trust 178
## 4 anticipation 168
## 5 fear 152
## 6 joy 116
## 7 sadness 108
## 8 anger 96
## 9 surprise 84
## 10 disgust 41
## [1] "Bird by Bird: Some Instructions on Writing and Life"
## # A tibble: 10 x 2
## sentiment n
## <chr> <int>
## 1 positive 77
## 2 negative 55
## 3 anticipation 40
## 4 trust 38
## 5 joy 37
## 6 fear 30
## 7 sadness 27
## 8 disgust 17
## 9 surprise 16
## 10 anger 15
## [1] "Atomic Habits: An Easy and Proven Way to Build Good Habits and Break Bad Ones"
## # A tibble: 10 x 2
## sentiment n
## <chr> <int>
## 1 positive 835
## 2 trust 455
## 3 anticipation 439
## 4 negative 356
## 5 joy 296
## 6 fear 254
## 7 sadness 180
## 8 anger 147
## 9 surprise 139
## 10 disgust 117
## [1] "Storynomics: Story-Driven Marketing in the Post-Advertising World"
## # A tibble: 10 x 2
## sentiment n
## <chr> <int>
## 1 positive 860
## 2 trust 405
## 3 negative 364
## 4 anticipation 335
## 5 joy 250
## 6 fear 221
## 7 sadness 171
## 8 anger 167
## 9 surprise 166
## 10 disgust 76
## [1] "Crucial Conversations Tools for Talking When Stakes Are High, Second Edition"
## # A tibble: 10 x 2
## sentiment n
## <chr> <int>
## 1 positive 758
## 2 negative 496
## 3 trust 412
## 4 fear 282
## 5 anticipation 258
## 6 anger 243
## 7 joy 216
## 8 sadness 196
## 9 disgust 142
## 10 surprise 108
## [1] "Pre-Suasion: A Revolutionary Way to Influence and Persuade"
## # A tibble: 10 x 2
## sentiment n
## <chr> <int>
## 1 positive 84
## 2 trust 51
## 3 negative 31
## 4 anticipation 27
## 5 fear 24
## 6 joy 22
## 7 anger 14
## 8 sadness 12
## 9 surprise 9
## 10 disgust 3
## [1] "Made to Stick: Why some ideas take hold and others come unstuck"
## # A tibble: 10 x 2
## sentiment n
## <chr> <int>
## 1 positive 499
## 2 trust 236
## 3 anticipation 198
## 4 negative 167
## 5 joy 156
## 6 fear 123
## 7 surprise 107
## 8 sadness 74
## 9 anger 65
## 10 disgust 60
## [1] "The Charisma Myth: Master the Art of Personal Magnetism"
## # A tibble: 10 x 2
## sentiment n
## <chr> <int>
## 1 positive 483
## 2 negative 254
## 3 trust 228
## 4 joy 166
## 5 anticipation 162
## 6 fear 157
## 7 sadness 143
## 8 anger 120
## 9 surprise 65
## 10 disgust 58
## [1] "The Power of Moments: Why Certain Experiences Have Extraordinary Impact"
## # A tibble: 10 x 2
## sentiment n
## <chr> <int>
## 1 positive 294
## 2 trust 132
## 3 anticipation 123
## 4 negative 106
## 5 joy 96
## 6 fear 72
## 7 anger 52
## 8 surprise 50
## 9 sadness 45
## 10 disgust 19
## [1] "Principles: Life and Work"
## # A tibble: 10 x 2
## sentiment n
## <chr> <int>
## 1 positive 313
## 2 trust 178
## 3 negative 129
## 4 anticipation 120
## 5 joy 103
## 6 sadness 80
## 7 fear 78
## 8 anger 53
## 9 surprise 50
## 10 disgust 35
## [1] "Deep Work: Rules for Focused Success in a Distracted World"
## # A tibble: 10 x 2
## sentiment n
## <chr> <int>
## 1 positive 176
## 2 trust 69
## 3 anticipation 54
## 4 negative 36
## 5 joy 32
## 6 fear 19
## 7 sadness 14
## 8 surprise 14
## 9 anger 12
## 10 disgust 7
## [1] "Getting to Yes: Negotiating an agreement without giving in"
## # A tibble: 10 x 2
## sentiment n
## <chr> <int>
## 1 positive 444
## 2 trust 234
## 3 negative 180
## 4 anticipation 135
## 5 anger 103
## 6 fear 100
## 7 joy 83
## 8 sadness 68
## 9 surprise 48
## 10 disgust 38
## [1] "Who: The A Method for Hiring"
## # A tibble: 10 x 2
## sentiment n
## <chr> <int>
## 1 positive 259
## 2 trust 125
## 3 anticipation 95
## 4 joy 73
## 5 negative 68
## 6 fear 30
## 7 surprise 29
## 8 anger 25
## 9 sadness 22
## 10 disgust 16
## [1] "Mindset: Changing The Way You think To Fulfil Your Potential"
## # A tibble: 10 x 2
## sentiment n
## <chr> <int>
## 1 positive 317
## 2 trust 160
## 3 negative 134
## 4 joy 117
## 5 anticipation 100
## 6 fear 78
## 7 anger 70
## 8 sadness 65
## 9 disgust 57
## 10 surprise 44
## [1] "The 4-Hour Work Week: Escape the 9-5, Live Anywhere and Join the New Rich"
## # A tibble: 10 x 2
## sentiment n
## <chr> <int>
## 1 positive 131
## 2 anticipation 70
## 3 negative 64
## 4 trust 57
## 5 joy 56
## 6 fear 34
## 7 surprise 27
## 8 anger 24
## 9 sadness 20
## 10 disgust 14
## [1] "Tools of Titans: The Tactics, Routines, and Habits of Billionaires, Icons, and World-Class Performers"
## # A tibble: 10 x 2
## sentiment n
## <chr> <int>
## 1 positive 406
## 2 negative 251
## 3 trust 199
## 4 anticipation 188
## 5 fear 134
## 6 joy 126
## 7 anger 111
## 8 sadness 108
## 9 surprise 78
## 10 disgust 74
## [1] "The Elements of Eloquence: How to Turn the Perfect English Phrase"
## # A tibble: 10 x 2
## sentiment n
## <chr> <int>
## 1 positive 18
## 2 negative 13
## 3 fear 9
## 4 trust 9
## 5 joy 6
## 6 sadness 6
## 7 anger 5
## 8 anticipation 3
## 9 disgust 2
## 10 surprise 2
## [1] "The One Thing: The Surprisingly Simple Truth Behind Extraordinary Results: Achieve your goals with one of the world's bestselling success books (Basic Skills)"
## # A tibble: 10 x 2
## sentiment n
## <chr> <int>
## 1 positive 139
## 2 anticipation 97
## 3 trust 60
## 4 joy 56
## 5 negative 32
## 6 fear 20
## 7 anger 14
## 8 surprise 14
## 9 disgust 9
## 10 sadness 9
## [1] "How to Win Friends and Influence People"
## # A tibble: 10 x 2
## sentiment n
## <chr> <int>
## 1 positive 33
## 2 trust 14
## 3 negative 11
## 4 anticipation 10
## 5 joy 7
## 6 anger 6
## 7 fear 5
## 8 surprise 5
## 9 disgust 4
## 10 sadness 4
## [1] "The Untethered Soul: The Journey Beyond Yourself"
## # A tibble: 10 x 2
## sentiment n
## <chr> <int>
## 1 positive 353
## 2 negative 251
## 3 fear 183
## 4 anticipation 172
## 5 trust 158
## 6 joy 156
## 7 sadness 137
## 8 anger 125
## 9 surprise 65
## 10 disgust 56
## [1] "Man's Search For Meaning: The classic tribute to hope from the Holocaust"
## # A tibble: 10 x 2
## sentiment n
## <chr> <int>
## 1 positive 199
## 2 negative 172
## 3 fear 108
## 4 sadness 100
## 5 trust 97
## 6 anticipation 93
## 7 joy 77
## 8 anger 62
## 9 disgust 56
## 10 surprise 33
## [1] "The Power of your Subconscious Mind and Other Works"
## # A tibble: 10 x 2
## sentiment n
## <chr> <int>
## 1 positive 183
## 2 joy 110
## 3 trust 110
## 4 anticipation 74
## 5 negative 59
## 6 anger 43
## 7 fear 38
## 8 sadness 29
## 9 surprise 26
## 10 disgust 22
## [1] "Ego is the Enemy: The Fight to Master Our Greatest Opponent"
## # A tibble: 10 x 2
## sentiment n
## <chr> <int>
## 1 positive 206
## 2 trust 109
## 3 negative 97
## 4 anticipation 85
## 5 joy 79
## 6 fear 59
## 7 anger 54
## 8 sadness 42
## 9 disgust 37
## 10 surprise 31
## [1] "Outliers: The Story of Success"
## # A tibble: 7 x 2
## sentiment n
## <chr> <int>
## 1 positive 24
## 2 trust 11
## 3 joy 5
## 4 anticipation 4
## 5 fear 3
## 6 surprise 3
## 7 sadness 1
## [1] "The Start-up of You: Adapt to the Future, Invest in Yourself, and Transform Your Career"
## # A tibble: 10 x 2
## sentiment n
## <chr> <int>
## 1 positive 145
## 2 anticipation 79
## 3 trust 64
## 4 joy 42
## 5 negative 40
## 6 surprise 22
## 7 fear 21
## 8 sadness 17
## 9 anger 14
## 10 disgust 8
for (i in 1:28){
sentiment[[i]] %>%
filter(sentiment %in% c('positive','negative')) %>%
mutate( n2 = n/sum(n)) %>% print()
}
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 450 0.639
## 2 negative 254 0.361
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 53 0.779
## 2 negative 15 0.221
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 172 0.637
## 2 negative 98 0.363
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 413 0.677
## 2 negative 197 0.323
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 77 0.583
## 2 negative 55 0.417
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 835 0.701
## 2 negative 356 0.299
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 860 0.703
## 2 negative 364 0.297
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 758 0.604
## 2 negative 496 0.396
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 84 0.730
## 2 negative 31 0.270
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 499 0.749
## 2 negative 167 0.251
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 483 0.655
## 2 negative 254 0.345
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 294 0.735
## 2 negative 106 0.265
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 313 0.708
## 2 negative 129 0.292
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 176 0.830
## 2 negative 36 0.170
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 444 0.712
## 2 negative 180 0.288
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 259 0.792
## 2 negative 68 0.208
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 317 0.703
## 2 negative 134 0.297
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 131 0.672
## 2 negative 64 0.328
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 406 0.618
## 2 negative 251 0.382
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 18 0.581
## 2 negative 13 0.419
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 139 0.813
## 2 negative 32 0.187
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 33 0.75
## 2 negative 11 0.25
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 353 0.584
## 2 negative 251 0.416
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 199 0.536
## 2 negative 172 0.464
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 183 0.756
## 2 negative 59 0.244
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 206 0.680
## 2 negative 97 0.320
## # A tibble: 1 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 24 1
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 145 0.784
## 2 negative 40 0.216
books <- str_trunc(book_names, width=22)
all <- list()
for (i in 1:28) {
all[[i]] <- sentiment[[i]] %>% filter(sentiment %in% c('positive','negative')) %>% mutate(n2 = n/sum(n)) %>% print()
}
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 450 0.639
## 2 negative 254 0.361
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 53 0.779
## 2 negative 15 0.221
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 172 0.637
## 2 negative 98 0.363
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 413 0.677
## 2 negative 197 0.323
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 77 0.583
## 2 negative 55 0.417
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 835 0.701
## 2 negative 356 0.299
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 860 0.703
## 2 negative 364 0.297
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 758 0.604
## 2 negative 496 0.396
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 84 0.730
## 2 negative 31 0.270
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 499 0.749
## 2 negative 167 0.251
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 483 0.655
## 2 negative 254 0.345
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 294 0.735
## 2 negative 106 0.265
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 313 0.708
## 2 negative 129 0.292
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 176 0.830
## 2 negative 36 0.170
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 444 0.712
## 2 negative 180 0.288
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 259 0.792
## 2 negative 68 0.208
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 317 0.703
## 2 negative 134 0.297
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 131 0.672
## 2 negative 64 0.328
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 406 0.618
## 2 negative 251 0.382
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 18 0.581
## 2 negative 13 0.419
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 139 0.813
## 2 negative 32 0.187
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 33 0.75
## 2 negative 11 0.25
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 353 0.584
## 2 negative 251 0.416
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 199 0.536
## 2 negative 172 0.464
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 183 0.756
## 2 negative 59 0.244
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 206 0.680
## 2 negative 97 0.320
## # A tibble: 1 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 24 1
## # A tibble: 2 x 3
## sentiment n n2
## <chr> <int> <dbl>
## 1 positive 145 0.784
## 2 negative 40 0.216
Positivty Map of the books.
all_bound <- do.call("rbind", all) %>% filter(sentiment == "positive")
library(ggrepel)
all_bound %>% ggplot(aes(x= book_names, y=n2)) +
geom_point() +
geom_label_repel(aes(label=books, color = ifelse(n2 <0.55, "red", "blue")), size = 3) +
theme_classic() +
theme(legend.position = "none",
text = element_text(size=18),
axis.text.x = element_blank()) +
xlab("Books") +
ylab("Positivity score")
Let’s look at the book with the lowest positivity score. “Man’s search for meaning”. This book is based on Victor Frankl sufferings during the second world war. This is also kind of expected.
I am getting more and more convinced text mining is giving good insights.
The book “The Outliers” appeared on the top of the positivity plot was a real outlier here. 😮
It is hard to know everything from the beginning and we will go back to make some additional cleaning. The word count from the book “The Outliers” is 107. This is really low. So in the next iteration, I would remove it from the analysis since it will not be reliable.
book_names[[27]]
## [1] "Outliers: The Story of Success"
top[[27]]
## # A tibble: 105 x 2
## # Groups: word [105]
## word n
## <chr> <int>
## 1 ability 3
## 2 knowing 3
## 3 sense 3
## 4 communicate 2
## 5 distance 2
## 6 family 2
## 7 intelligence 2
## 8 power 2
## 9 practical 2
## 10 sternberg 2
## # ... with 95 more rows
The word count from the book “The Outliers” below is 107. This is really low. So in the next iteration, I would remove it from the analysis since it will not be very informative. It is hard to know everything from the beginning and we will go back and make some additional cleaning.
…
Summary
It is not feasible to read millions of pages to check whether text mining is reliable. But here I got some data that I know the content and I applied text mining approaches and sentiment analysis.
Both the monograms or bigrams pointed to similar ideas what the books were about. And the sentiments made sense with the genres of the books in my kindle.
Let’s come back to our hacker.
An unanticipated side effect of text mining changed him forever. Analyzing my books and gaining the insights made him more and more interested in reading. And he started to care about the world around him. The world was different.
What I was trying to do for myself, he did for himself. He transformed into a better version of himself.
The world was brighter. ☀️
The radio disrupted the silence.
“brrring…..brrring…..brrring…..”
I woke up.
…
Thank you for reading. I hope you’ve learned something or got inspiration from this. Please feel free to leave comments, suggestions, and questions. (You can always contact me by email at serdar.korur@gmail.com)
You can find the data and the code in my github.
Until next time!
Serdar